

Conservation by Design

Setting Priorities

Conservation Measuring Success **Approach** Taking Action

Developing Strategies

Ecoregions

Framework for capturing variation in biodiversity across environmental gradients

Large areas of land and water delineated by climate, vegetation & geology (Bailey)

Status of
Ecoregional
Planning
in the
US and Canada

Status of Planning

1st iteration completed

In progress

Not yet started

Saving the Last Great Places

Map Created By:
The Mauric Constanting,
Midwest Constanting Science Conta
O February 2002, The Mauric Constanting

q:tapi tabaredta p_siaius_0202 api

Central Shortgrass Prairie

Arickaree River

Purgatoire River

Southern Rocky Mountains

One of the fastest growing regions in US (31% growth rate)

65% public land

Highest ecoregion in US

Headwaters for 3 major rivers in

North America

Goal

Design a portfolio (network) of conservation areas that, with proper management, would ensure the long-term survival of the species, communities, and ecological systems of the Southern Rocky Mountains

Ecoregional Steps

1. Select conservation targets

- 2. Set conservation goals
- 3. Assess viability/integrity
- 4. Select areas and design portfolio
- 5. Identify threats and strategies

Coarse-filter/Fine-filter Approach

Conserving multiple viable examples of systems & communities will conserve majority of species

Certain species require individual attention b/c ecosystem approach can't capture them

Ecological Systems:

groups of communities linked by ecological processes

Aquatic Systems

Montane/moderate-low gradient/headwater creeks/sandstones

Terrestrial Systems

Aspen Forests

Aquatic Classification Framework

Macrohabitats
segments of
streams & lakes

79 Rare or Imperiled Plant Communities

Similar floristic composition, vegetative structure & habitat conditions

Box Elder-Narrowleaf Cottonwood/Red-Osier Dogwood

383 Species

Federally listed

Declining

Endemic

Imperiled

Disjunct

Wide-ranging

Sources of Information

- Natural Heritage Programs
- Natural Diversity Information
 Source
- Partners in Flight
- U.S. GAP Analysis Programs
- Remote Sensing
- Expert Workshops

Conservation Goals

How much is enough?

Set goals in terms of number and distribution of targets

- † Globally rare species: all viable & restorable occurrences, up to 25 (3/section)
- † Ecological systems: 30% of historic extent (2/section)

Viability/Integrity Assessment

Is this a viable population?

Does this system have high integrity?

Viability guidelines for species and systems

*∝*Expert review

| Identified viable occurrences

Suitability Index

Integrates land use factors representing indirect measure of viability/integrity or "cost" of conserving an area

- Dams
- Fire Fuel Conditions
- Land Use/Land Cover
- Mines
- Projected Urban Growth
- Road Density

Design of the Portfolio

- SITES spatial optimization software program
- Model selected areas that most efficiently met goals -- i.e., least area at lowest cost
- Refined by experts

Conservation Blueprint

Important places to conserve that must remain intact or be restored

Starting point for designing strategies to address threats

188 areas 65% public

Met goals for >90% systems, not all species

1. Conservation Value

Identified irreplaceable areas based on # of imperiled targets & landscape integrity

Green = highest conservation value

2. Priority Threats

Incompatible Development

Invasive Species

Incompatible Fire Management Practices

Roads

Mining/Oil & Gas Dev.

Whirling Disease & Hydrologic Alterations

3. Field Verification

Level of field inventory

Red = well inventoried & ready for conservation plans/action

Tan = need extensive field inventory

The Challenge

Need efficient and effective means to develop strategies to capture <u>ALL</u> ecoregional targets and abate critical threats within and across ecoregions.

Target-Based Approach

Threat-Based Approach

Five-S Framework to Develop Multi-Scale Strategies

- Systems
- Stresses
- Sources of stress
- Strategies
- Success measures

Potential Uses by Partners

- Inform & provide data for:
 - Land use plans/assessments
 - Setting conservation priorities
 - Fire management planning

- Guide inventory, research, & restoration activities
- Inform policies & protection efforts

Conservation Blueprint

- Comprehensive sciencebased process
- Inform land use & management decisions for conservation community
- Expand partnerships to address threats, fill data gaps,
 & refine assessment

http://www.conserveonline.org